OCR Maths S1

Topic Questions from Papers

 Discrete Random Variables1 The table below shows the probability distribution of the random variable X.

x	-2	-1	0	1	2
$\mathrm{P}(X=x)$	$\frac{1}{4}$	$\frac{1}{5}$	k	$\frac{2}{5}$	$\frac{1}{10}$

(i) Find the value of the constant k.
(ii) Calculate the values of $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

2 The probability distribution of a discrete random variable, X, is given in the table.

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{1}{3}$	$\frac{1}{4}$	p	q

It is given that the expectation, $\mathrm{E}(X)$, is $1 \frac{1}{4}$.
(i) Calculate the values of p and q.
(ii) Calculate the standard deviation of X.

3 Part of the probability distribution of a variable, X, is given in the table.

x	0	1	2	3
$\mathrm{P}(X=x)$		$\frac{3}{10}$	$\frac{1}{5}$	$\frac{2}{5}$

(i) Find $\mathrm{P}(X=0)$.
(ii) Find $\mathrm{E}(X)$.

4 The table shows the probability distribution for a random variable X.

x	0	1	2	3
$\mathrm{P}(X=x)$	0.1	0.2	0.3	0.4

Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(Q1, June 2007)

5 Each time a certain triangular spinner is spun, it lands on one of the numbers 0,1 and 2 with probabilities as shown in the table.

Number	Probability
0	0.7
1	0.2
2	0.1

The spinner is spun twice. The total of the two numbers on which it lands is denoted by X.
(i) Show that $\mathrm{P}(X=2)=0.18$.

The probability distribution of X is given in the table.

x	0	1	2	3	4
$\mathrm{P}(X=x)$	0.49	0.28	0.18	0.04	0.01

(ii) Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

6 Last year Eleanor played 11 rounds of golf. Her scores were as follows:

$$
79, \quad 71, \quad 80,67,67, \quad 74, \quad 66,65,71,66,64 .
$$

(i) Calculate the mean of these scores and show that the standard deviation is 5.31 , correct to 3 significant figures.
(ii) Find the median and interquartile range of the scores.

This year, Eleanor also played 11 rounds of golf. The standard deviation of her scores was 4.23, correct to 3 significant figures, and the interquartile range was the same as last year.
(iii) Give a possible reason why the standard deviation of her scores was lower than last year although her interquartile range was unchanged.

In golf, smaller scores mean a better standard of play than larger scores. Ken suggests that since the standard deviation was smaller this year, Eleanor's overall standard has improved.
(iv) Explain why Ken is wrong.
(v) State what the smaller standard deviation does show about Eleanor's play.
(Q6, June 2009)

7 A certain four-sided die is biased. The score, X, on each throw is a random variable with probability distribution as shown in the table. Throws of the die are independent.

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

(i) Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

The die is thrown 10 times.
(ii) Find the probability that there are not more than 4 throws on which the score is 1 .
(iii) Find the probability that there are exactly 4 throws on which the score is 2 .

8 Each of four cards has a number printed on it as shown.
2
3
3
Two of the cards are chosen at random, without replacement. The random variable X denotes the sum of the numbers on these two cards.
(i) Show that $\mathrm{P}(X=6)=\frac{1}{6}$ and $\mathrm{P}(X=4)=\frac{1}{3}$.
(ii) Write down all the possible values of X and find the probability distribution of X.
(iii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

9 The probability distribution of a discrete random variable, X, is shown below.

x	0	2
$\mathrm{P}(X=x)$	a	$1-a$

(i) Find $\mathrm{E}(X)$ in terms of a.
(ii) Show that $\operatorname{Var}(X)=4 a(1-a)$.

10 The probability distribution of a random variable X is shown in the table.

x	1	2	3	4
$\mathrm{P}(X=x)$	0.1	0.3	$2 p$	p

(i) Find p.
(ii) Find $\mathrm{E}(X)$.

11 A bag contains 4 blue discs and 6 red discs. Chloe takes a disc from the bag. If this disc is red, she takes 2 more discs. If not, she takes 1 more disc. Each disc is taken at random and no discs are replaced.
(i) Complete the probability tree diagram in your Answer Book, showing all the probabilities.

The total number of blue discs that Chloe takes is denoted by X.
(ii) Show that $\mathrm{P}(X=1)=\frac{3}{5}$.

The complete probability distribution of X is given below.

x	0	1	2
$\mathrm{P}(X=x)$	$\frac{1}{6}$	$\frac{3}{5}$	$\frac{7}{30}$

(iii) Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(Q5, June 2011)

12 The masses, $x \mathrm{~kg}$, of 50 bags of flour were measured and the results were summarised as follows.

$$
n=50 \quad \Sigma(x-1.5)=1.4 \quad \Sigma(x-1.5)^{2}=0.05
$$

Calculate the mean and standard deviation of the masses of these bags of flour.

13 When a four-sided spinner is spun, the number on which it lands is denoted by X, where X is a random variable taking values $2,4,6$ and 8 . The spinner is biased so that $\mathrm{P}(X=x)=k x$, where k is a constant.
(i) Show that $\mathrm{P}(X=6)=\frac{3}{10}$.
(ii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

