OCR Maths S1

Topic Questions from Papers

Discrete Random Variables

PhysicsAndMathsTutor.com

1 The table below shows the probability distribution of the random variable *X*.

x	-2	-1	0	1	2
$\mathbf{P}(X=x)$	$\frac{1}{4}$	$\frac{1}{5}$	k	$\frac{2}{5}$	$\frac{1}{10}$

- (i) Find the value of the constant k.
- (ii) Calculate the values of E(X) and Var(X).

(Q4, Jan 2005)

2 The probability distribution of a discrete random variable, X, is given in the table.

x	0	1	2	3
$\mathbf{P}(X=x)$	$\frac{1}{3}$	$\frac{1}{4}$	р	q

It is given that the expectation, E(X), is $1\frac{1}{4}$.

(i) Calculate the values of *p* and *q*. [5] (ii) Calculate the standard deviation of X. [4] (Q5, June 2006)

physicsandmathstutor.com

Part of the probability distribution of a variable, X, is given in the table. 3

x	0	1	2	3
$\mathbf{P}(X=x)$		$\frac{3}{10}$	$\frac{1}{5}$	$\frac{2}{5}$

(i) Find P(X = 0).

(ii) Find E(X).

[2]

[2]

(Q1, Jan 2007)

[2]

[5]

4 The table shows the probability distribution for a random variable *X*.

x	0	1	2	3
$\mathbf{P}(X=x)$	0.1	0.2	0.3	0.4

Calculate E(X) and Var(X).

5

[5] (Q1, June 2007)

physicsandmathstutor.com							
	•	.	is spun, i	t lands o	1 one of	the numb	ers 0, 1 and 2 with
probabilities as show	n in the tai	bie.					

Number	Probability
0	0.7
1	0.2
2	0.1

The spinner is spun twice. The total of the two numbers on which it lands is denoted by X.

(i) Show that P(X = 2) = 0.18.

The probability distribution of X is given in the table.

x	0	1	2	3	4
$\mathbf{P}(X=x)$	0.49	0.28	0.18	0.04	0.01

(ii) Calculate E(X) and Var(X).

[5] (Q1, Jan 2009)

[3]

6 Last year Eleanor played 11 rounds of golf. Her scores were as follows:

79, 71, 80, 67, 67, 74, 66, 65, 71, 66, 64.

- (i) Calculate the mean of these scores and show that the standard deviation is 5.31, correct to 3 significant figures. [4]
- (ii) Find the median and interquartile range of the scores. [4]

This year, Eleanor also played 11 rounds of golf. The standard deviation of her scores was 4.23, correct to 3 significant figures, and the interquartile range was the same as last year.

(iii) Give a possible reason why the standard deviation of her scores was lower than last year although her interquartile range was unchanged. [1]

In golf, smaller scores mean a better standard of play than larger scores. Ken suggests that since the standard deviation was smaller this year, Eleanor's overall standard has improved.

(iv)	Explain why Ken is wrong.	[1]
(v)	State what the smaller standard deviation does show about Eleanor's play.	[1]

(Q6, June 2009)

7 A certain four-sided die is biased. The score, X, on each throw is a random variable with probability distribution as shown in the table. Throws of the die are independent.

x	0	1	2	3
$\mathbf{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

(i) Calculate E(X) and Var(X).

The die is thrown 10 times.

(ii) Find the probability that there are not more than 4 throws on which the score is 1.	[2]
--	-----

(iii) Find the probability that there are exactly 4 throws on which the score is 2.

(Q4, Jan 2010)

[5]

[3]

8 Each of four cards has a number printed on it as shown.

1 2 3 3

Two of the cards are chosen at random, without replacement. The random variable X denotes the sum of the numbers on these two cards.

- (i) Show that $P(X = 6) = \frac{1}{6}$ and $P(X = 4) = \frac{1}{3}$. [3]
- (ii) Write down all the possible values of *X* and find the probability distribution of *X*. [4]

(iii) Find E(X) and Var(X).

(Q5, June 2010)

[5]

[2]

[3]

(Q7, Jan 2011)

9 The probability distribution of a discrete random variable, X, is shown below.

x	0	2
$\mathbf{P}(X=x)$	а	1 <i>– a</i>

(i) Find E(X) in terms of a.

(ii) Show that Var(X) = 4a(1-a).

physicsandmathstutor.com

10 The probability distribution of a random variable *X* is shown in the table.

x	1	2	3	4
P(X = x)	0.1	0.3	2 <i>p</i>	р

(i) Find *p*.

(ii) Find E(X).

[2]

[2]

(Q1, Jan 2012)

- 11 A bag contains 4 blue discs and 6 red discs. Chloe takes a disc from the bag. If this disc is red, she takes 2 more discs. If not, she takes 1 more disc. Each disc is taken at random and no discs are replaced.
 - (i) Complete the probability tree diagram in your Answer Book, showing all the probabilities. [2]

The total number of blue discs that Chloe takes is denoted by X.

(ii) Show that $P(X = 1) = \frac{3}{5}$.

The complete probability distribution of *X* is given below.

x	0	1	2
$\mathbf{P}(X=x)$	$\frac{1}{6}$	<u>3</u> 5	$\frac{7}{30}$

(iii) Calculate E(X) and Var(X).

[5] (Q5, June 2011)

[2]

12 The masses, x kg, of 50 bags of flour were measured and the results were summarised as follows.

n = 50 $\Sigma(x - 1.5) = 1.4$ $\Sigma(x - 1.5)^2 = 0.05$

Calculate the mean and standard deviation of the masses of these bags of flour.

[6] (Q2, June 2012) **13** When a four-sided spinner is spun, the number on which it lands is denoted by *X*, where *X* is a random variable taking values 2, 4, 6 and 8. The spinner is biased so that P(X = x) = kx, where *k* is a constant.

(i) Show that $P(X = 6) = \frac{3}{10}$.	[2]
---	-----

(ii) Find E(X) and Var(X).

[5] (Q1, Jan 2013)